
BACKGROUND 

 Selective deuteration at the alpha and beta carbon in the side 
chain of  L-DOPA has been shown to attenuate the metabolism of 
the deuterated dopamine derived from this molecule (Malmlöf 
2008).  

 Nonclinical studies confirmed that the kinetic isotope effect 
attenuates the metabolism of deuterated dopamine by 
monomine oxidase (MAO), the main metabolic pathway, and by 
dopamine beta-hydroxylase (DBH) to norepinephrine. 

 Reduced rates of metabolism but also metabolic switching, a 
change from one metabolic site to a different site, has been 
shown as result of selective deuteration in different molecules 
(Harbeson 2014). Those effects need to be evaluated during the 
development of a deuterated drug candidate. 

 Different sites of L-DOPA metabolism, an extremely short half life 
of dopamine in plasma and reabsorption of L-DOPA and its 
metabolite 3-O-methyldopa (3-OMD) make it difficult to establish 
a predictive PK model for L-DOPA that also can account for 
deuterium kinetic isotope effects. 

 L-DOPA and its metabolites are mainly excreted via urine. 
Therefore the model includes both plasma concentrations of L-
DOPA and its main metabolites and amounts excreted into urine.  
 

METHODS 

 A complex PK/Metabolite model has been developed and fit to the data using 
a combination of optimization, adjustment and Bayesian algorithm to finally 
reach very good fitting properties. 

 The population predictions (VPC) were excellent. 
 The average predictions were in the middle of the observed data with very 

small bias. 
 This model can be used for extrapolation to any dosage regimen but requires 

Carbidopa to be in excess (e.g. 1 to 4 ratio of carbidopa to L-DOPA). 
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Figure 1. L-DOPA Metabolism 

Abbreviations. Compounds: 3-OMD = 3-O-methyldopa, NE = norepinephrine, DA = 
dopamine, DOPAL = 3,4-dihydroxyphenylacetaldehyde, DOPAC = 3,4-
dihydroxyphenylacetic acid, MHPG = 3-Methoxy-4-hydroxyphenylglycol, 3-MT = 3-
methyoxytyramine, HMPAL = 4-hydroxy-3-methoxyphenyl acetaldehyde, HVA= 
homovanillic acid. Enzymes: DDC = dopa decarboxylase, MAO = monoamine 
oxidase, COMT = catechol O-methyltransferase, DBH = dopamine b-hydroxylase, 
ALDH = aldehyde dehydrogenase 

 Blood and urine concentration over 24 hours were determined 
after administration of 37.5 mg carbidopa (tablets) and 150 mg 
L-DOPA (oral solution) 30 min after carbidopa to 11 healthy 
subjects. Time profiles of L-DOPA, dopamine, DOPAC, HVA and 
3-OMD in plasma and cumulative amounts in urine were 
modeled simultaneously including double peak, and 
extravascular formation of dopamine. 

 Optimization was achieved with a new accurate parametric EM 
method QRPEM in Phoenix NLME that uses low discrepancy 
Sobol sequences, as opposed to the stochastic Monte Carlo 
sampling technique.   

 Locally initiated model runs were sent to remote computing 
platforms for execution and results returned to the local 
application using parallelization techniques in Phoenix 8 and a 
300 core SGE grid hosted on Amazon Web Services by means of 
CFN grid software. 

 
 

 To obtain population PK characteristics of L-DOPA 
and its metabolites in plasma and urine using the 
parametric, non-linear mixed effect modelling with 
Phoenix NLME. 

 To show the advantage of QRPEM algorithm 
compared to standard FOCE-ELS. 

 To present a new parallelization technique using 
large grid computing resources to solve complex 
problems without time consuming runs. 

 

OBJECTIVES 

PROCESSES INVOLVED 
 L-DOPA Drug dose input 

 2 absorptions sites, separated by tlag 
 Fraction is absorbed immediately while the remaining 

fraction is absorbed after tlag 
 Extravascular immediate equilibrium between L-DOPA and 

DOPAMINE resulting in only a fraction of L-DOPA from the 2 
sites entering Plasma In Plasma 

 Plasma first order metabolic transfer L-DOPA->DOPAMINE->DOPAC-
>HVA 

  Plasma first order metabolic transfer L-DOPA->3-OMD 
 L-DOPA First order transfer central/peripheral to peripheral/central 
 First order clearance of L-DOPA into urine  
 First order clearance of DOPAMINE into urine 
 First order clearance of DOPAC into urine  
 First order clearance of HVA into urine 
 First order clearance of 3-OMD into urine 
 
Optimization Algorithm 
 The estimation of the parameters was extremely complex and 

involved  
 Regular optimization using maximum likelihood  
 Adjustment for some of the mean parameters 
 Bayesian individual estimations for estimating some of the 

variances that could not be estimated using regular 
optimization algorithms because of 13 patients with 24 fixed 
effect parameters(mean parameters) 

 The model estimated 23 fixed and 23 random effects.  
 Only QRPEM had enough driving force for optimal minimization.  
 FOCE-ELS locked multiple times into local minimums with bad 

diagnostics.  
• Optimization was performed sequentially, starting with the fit of L-

DOPA and dopamine data. The corresponding clearance terms split 
across the different paths. This resulted in satisfactory goodness-of-
fit, good concordance between observed and simulated visual 
predictive checks and very good individual Bayesian fits for all 
responses.  

• The new technique shortened run times significantly.  
• Precision of parameters could not be assessed because the number 

of fixed effect parameter estimates was larger than individuals. 
 

Figure 2. Parent/Metabolite Model 

Parameter Estimate Unit Definition 
tvV 115.468 ml/kg LDOPA volume of distribution 
tvCl 35.0582 ml/kg/hr Urine LDOPA clearance 

tvKa1 2.13225 1/hr Ldopa absorption from site 1 into plasma 

tvka2 0.395453 1/hr Ldopa absorption from site 2 into plasma 

tvV2 243.99 ml/kg LDOPA peripheral volume of distribution 

tvCl2 125.493 ml/kg LDOPA Inter compartmental clearance 
tvflogit 0.617825 None fractionLDOPA  drug absorbed from first site 

tvflogitda 2.40298 None Bioavailability in the logit domain(~90% 
bioavailability) 

tvvdaplasma 510.614 ml/kg Dopamine volume of distribution 
tvQ_C_cdaplasma 367.871 ml/kg/hr Flow from LDOPA to dopamine 

tvkada 0.0292433 1/hr absorption dopamine into plasma 
tvcldaurine 10010.9 ml/kg/hr Dopamine clearance into urine 

tvtlag 1.33242 Hours delay in dosing relative to true dosing time 

tvv3omd 437.717 ml/kg OMD volume of distribution 
tvQ_C_c3omd 88.7012 ml/kg/hr Flow LDOPA into 3OMD 

tvCL_c3omd_a3omd
urine 

11.6955 ml/kg/hr Urine clearance 3OMD 

tvVdopac 496.101 ml/kg DOPAC volume of distribution 
tvQ_dadopac 600747 ml/kg/hr Flow dopamine into DOPAC 

tvCL_dopac_urine 327.629 ml/kg/hr DOPAC urine clearance 
tvVva 200.271 ml/kg HVA volume of distribution 

tvQ_dopac_hva 4326.1 ml/kg/hr Flow DOPAC into HVA 
tvCL_hva_urine 1501.97 ml/kg/hr HVA urine clearance 

tvfhva -1.0985 none fraction urine excreted (in the logit 
domain),~25% fraction excreted 

Visual Predictive Check 
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