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Introduction

•Transit compartment models described by systems of ordinary
differential equations (ODEs) have been widely used in the
pharmacokinetics and pharmacodynamics studies to describe
delayed outcomes.
• One of the obvious disadvantages of this type of models is that it may
require a large number of differential equations to fit the data.

• In addition, one needs to manually find a proper value for the number of
compartments.

• It is also not adequate to describe some complex features such as
double/multiple-peak phenomenon after oral administration.

•We propose to use a distributed delay approach to model
delayed outcomes that does not suffer these disadvantages, and
this approach is conceptually similar to red cell lifespan models
[3] with each individual assumed to have its own lifespan.

Objective

To demonstrate that the distributed delay approach is general
enough to incorporate a wide array of models as special cases
including transit compartment models, typical absorption mod-
els, and models for describing atypical absorption profiles such
as double/multiple-peak phenomenon after oral administration
in pharmacokinetics.

Methods

Let kin denote the inflow of a signal to a terminating compartment,
and T be a random variable representing the delay time with
probability density function (PDF) G. Then the delayed signal
is given by

S(t) =
∫ ∞

0
G(τ )kin(t− τ )dτ, (1)

which can be equivalently written as
S(t) =

∫ t

−∞
G(t− s)kin(s)ds.

More generally, for the case where multiple signals flow into a
terminating compartment, the delayed signals can be expressed
as follows:

S(t) =
Ns∑
j=1
Sj(t) (2)

with
Sj(t) =

∫ ∞
0
Gj(τ )kin,j(t− τ )dτ.

Here Ns denotes the number of signals, kin,j denotes the inflow
of the jth signal to the terminating compartment, and Gj is the
PDF of the delayed time Tj for the jth signal.
• If delay times arise from PK absorption phase, then S is the
input function feeding into the central compartment.

• If delay time are due to the distributional delay for PK/PD
link, then S is the input function feeding into a hypothetical
effect compartment.

• If delay times are for the observed drug effect, then S is the
delayed drug effect.

Results

Notations
• δ: Dirac delta (or impulse) function.
• Γ(t; k, ν): PDF of a gamma distribution with rate k and shape
parameter ν;
• if ν is a positive integer, then it is the PDF of an Erlang distribution;
• if ν = 1, then it is the PDF of an exponential distribution.

•Di or Dji: dose administered.
• tdose,i or tdose,ji: dosing time point.
• tlag,j: lag time.

Theoretical Results
Impulsive flows with general delays
Consider the single-pathway scenario (1) with multiple bolus (im-
pulsive) dosing events (i.e., kin = ∑m

i=1Diδ(t− tdose,i) withm being
the number of dosing events). For this case, (1) reduces to

S(t) =
m∑
i=1
DiG(t− tdose,i), (3)

which is the input function feeding into the central compartment
considered in [6] and [7] with a gamma distributed delay (that is,
G is the PDF of a gamma distribution).
Consider the multiple-pathway scenario (2) with multiple bolus
dosing events for each pathway (i.e, kin,j = ∑mj

i=1Djiδ(t − tdose,ji),
i = 1, 2, . . . ,mj, j = 1, 2, . . . , Ns). In this case, (1) reduces to

S(t) =
Ns∑
j=1

mj∑
i=1
DjiGj(t− tdose,ji). (4)

Point distributed (or discrete) delays with general kin

Consider the case where G is a linear combination of Dirac delta
functions and is given by G(t) = ∑m

j=1ωjδ(t− tlag,j), ωj ≥ 0 and∑m
j=1ωj = 1. We found that for this case (1) reduces to

S(t) =
m∑
j=1

ωjkin(t− tlag,j)

•For a special case with a pointed distributed delay at 0 (i.e.,
no lag time and G(t) = δ(t)) and constant infusion (i.e., kin is
a positive constant for a duration of time and then zero
afterwards), the resulting S is the input function feeding into
the central compartment for the zero-order absorption model.

Reducibility of a Delayed Signal into a
System of ODEs

If we make additional assumption on the form of G, then one
can reduce (1) into a system of ODEs by using the so-called
linear chain trick [1]. Specifically, a necessary and sufficient
condition for the reducibility of (1) to a system of ODEs is
that G is a linear combination of functions

exp(ξt), t exp(ξt), . . . , tm exp(ξt)
withm being a positive integer and ξ being a complex number.
Examples of such G: PDF of an Erlang distribution, PDF of
a mixture of Erlang distributions.

...

Erlang distributed delays with general kin

Consider the single-pathway scenario (1) with an Erlang dis-
tributed delay (i.e., G(t) = Γ(t; k, n), n is a positive integer).
For this case, (1) reduces to a transit compartment model

ẋ1(t) = kkin(t)− kx1(t),

ẋi(t) = kxi−1(t)− kxi(t), i = 2, 3, . . . , n
(5)

with output xn = S . If we assume that kin(t) = 0 for t < 0, then
the initial condition for (5) is xi(0) = 0, i = 1, 2, . . . , n.
• If kin(t) = Dδ(t), then (5) has zero initial conditions and it is
equivalent to

ẋ1(t) = −kx1(t),

ẋi(t) = kxi−1(t)− kxi(t), i = 2, 3, . . . , n,

x1(0) = kD, xi(0) = 0, i = 2, 3, . . . , n.

(6)

Note: (6) is a special case of (3) with an Erlang distributed
delay and single bolus dose at time 0; and (6) with n = 1 is the
absorption compartment for the first-order absorption model.

•For a single compartment and unknown kin, the resulting S is
the input function considered in [2] feeding into the central
compartment for the variability of absorption approach used to
model the double-peak phenomenon after oral administration.

• If kin is the solution of an Emax model, then the resulting S is
the delayed drug effect (e.g., a transit compartment model
with 4 compartments was considered in [4, 8]).

• If kin denotes the solution of an indirect response model, then
the resulting S is the delayed indirect response (e.g., see [3]).

Consider the multiple-pathway scenario (2) with an Erlang dis-
tributed delay for each pathway. For this case, each of Sj’s is the
output of some transit compartment model, and hence S is the
sum of the outputs of all these transit compartment models.
•For a special two-pathway case with a single bolus dosing
event at time 0 for each pathway, the resulting S is the input
function for the parallel inputs approach [2] to model the
double-peak phenomenon (Note: this is also a special case of
(4) with an Erlang distributed delay and a single bolus dosing
event at time 0 for each pathway).

•For a two-pathway case with exponential distributed delays
and bolus dosing at time 0 for one pathway and bolus dosing at
time tlag for the other one, the resulting S is the input function
for modeling two parallel first-order absorption processes [5]
(Note: this is also a special case of (4) with exponential
distributed delay and single bolus dosing for each pathway).

Mixture of discrete delays and Erlang Distributed Delays
•For a two-pathway case with an exponential distributed delay
and bolus dosing at time 0 for one pathway and a pointed
distributed delay at 0 and a constant infusion dosing event for
the other pathway, the resulting S is the input function for the
mixture of first-order absorption and zero-order absorption
model (e.g., [5]).

...

Numerical Results
•Data set [2]: consisting of plasma concentration-time profiles
for 12 subjects following an oral dose of veralipride at time 0.

•The parallel inputs approach is one of the two methods used in
[2] to model the double-peak feature presented in this data set.
Note: It requires numerous different combination of number of
compartments in each pathway to be manually tried, and
hence it is very inefficient and time-consuming.

• Instead of manually identifying the number of compartments
for each pathway, we estimate them along with other
parameters using the input function given in (4) with single
dosing event and a gamma distributed delay for each pathway.
Through this approach, we obtained reasonably good fitting
results for all the subjects and similar residual mean square
errors as those obtained in [2]. Figure 1 illustrates model
fitting results for two example individuals using FOCE in
Phoenix® NLMETM (Pharsight/Certara).

Conclusions

The distributed delay approach provides a more general and flex-
ible way to model delayed outcomes including absorption, distri-
bution, PK/PD link, drug response etc., and hence can capture
more complex features.
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