A Model Based Meta-analysis (MBMA) to Support Development of Medicines for Treatment of DPN, PHN and Fibromyalgia

Leticia Arrington^{1*}; Han Witjes^{2*}; Akshita Chawla¹; Richard Franzese²; Mark Lovern²; Sreeraj Macha¹

*Equal contribution; ¹Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA; ²Certara Strategic Consulting, Princeton, NJ, USA

GOAL

• To develop a model-based meta-analysis (MBMA) comparator model for neuropathic pain to provide a quantitative framework for comparison of drugs commonly used for the treatment of diabetic peripheral neuropathy (DPN), post-herpetic neuralgia (PHN), and fibromyalgia.

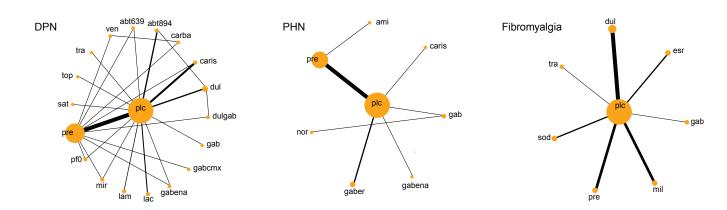
BACKGROUND

Neuropathic Pain

- · Neuropathic pain is caused by a lesion or disease of the central or peripheral somatosensory nervous system
- Common peripheral neuropathic pain conditions are DPN (caused by high sugar) and PHN (caused by viral damage to nerve cells after shingles infection)
- Fibromyalgia is an example of central neuropathic pain characterized by widespread musculoskeletal pain accompanied by fatigue, sleep, memory, and mood issues
- Several recommendations for the treatment of neuropathic pain have been proposed^{1,2}
- Evidence-based recommendations for the treatment of neuropathic pain are essential, eg, based on meta-analyses of 30% and 50% pain intensity reduction (PID30, PID50) as primary efficacy measure³

MBMA

- Model-based meta-analysis (MBMA) was introduced in 2005⁴ and has become an increasingly important tool in drug development to inform future study designs and quantitative decision making
- Treatment effects of different drugs across different patient populations are compared by including head-to-head comparisons and indirect comparisons of drugs from randomized controlled trials in a meta-analysis
- MBMA includes dose-response and/or time-course models and allows joint response modeling of multiple correlated endpoints


OBJECTIVE

• To develop a joint response MBMA model describing the proportion of patients who achieved ≥30% reduction (PID30) and ≥50% reduction (PID50) from baseline in pain score.

DATA

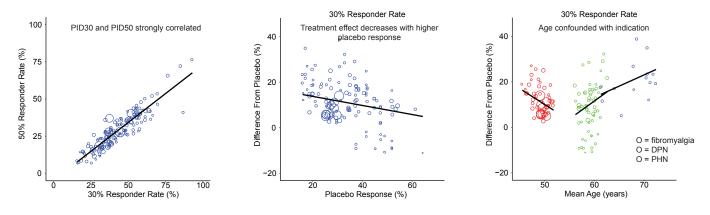

- The analysis dataset consisted of publicly available, summary-level clinical trial data from 74 randomized controlled trials involving more than 26,000 patients
- 38 trials in DPN, 15 in PHN, and 21 in fibromyalgia
- 61 trials with PID30, 66 with PID50, and 53 with both PID30 and PID50
- The dataset included patient and trial characteristics and PID30 and PID50 responder rate for 21 drugs and 3 combined therapies across 9 drug classes
- Longitudinal PID30 and PID50 data
- PID30 and PID50 data for a range of doses for 12 of the 21 drugs

Figure 1. Network diagram of the analysis dataset. Each compound is represented by a node. Direct comparisons within a trial are linked by a line. The width of the line is proportional to the number of studies

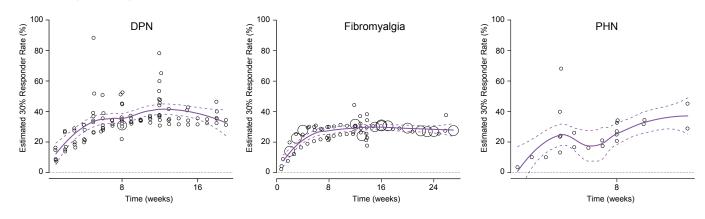

RESULTS

Figure 2. Exploratory plots of the endpoints at primary time point

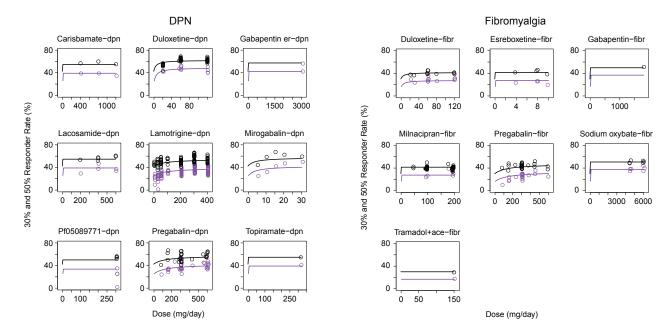

• Magnitude of placebo response is lower for fibromyalgia (29.9%) than for DPN (41.5%) and PHN (37.1%)

Figure 3. Estimated non-parametric placebo response (eo_{it}) of the 30% responder rate with LOESS fit (95% CI)

• Drug potency (ED₅₀) could be estimated for duloxetine, mirogabalin, pregabalin, gabapentin enacarbil, and lamotrigine

Figure 4. Observed and model-predicted dose-response for a subset of drugs included in the analysis dataset

abt639, abt-639; abt894, abt-894; carba, carbamazepine; caris, carisbamate; dul, duloxetine; dulgab, duloxetine + gabapentin; esr, esreboxetine; gab, gabapentin; gabcmx, gabapentin + b complex; gabena, gabapentin enacarbil; gaber, gabapentin er; lac, lacosamide; lam, lamotrigine; mil, milnacipran; mir, mirogabalin; pf0, pf05089771; plc, placebo; pre, pregabalin; sat, sativex; sod, sodium oxybate; top, topiramate; tra, tramadol + acetaminophen; ven, venlafaxine

MBMA Model Structure

- Joint response model describing the proportion of patients who achieved a reduction from baseline in pain score of at least 30% (PID30) and at least 50% (PID50)
- The number of patients with PID response at time t in treatment arm j of trial i for endpoint k (PID30, PID50) is assumed to
 follow a binomial distribution with probability of response P(PID)_{ijkt} and sample size N_{ijkt}

$$N_{PID,ijkt} \sim binomial (N_{ijkt}, P(PID)_{ijkt})$$

 The probability of response is described as the inverse logit sum of a non-parametric (unstructured) placebo response eo and a parametric treatment effect f(drug, dose, θ, X), depending on drug, dose, model parameters θ, and trial covariates X

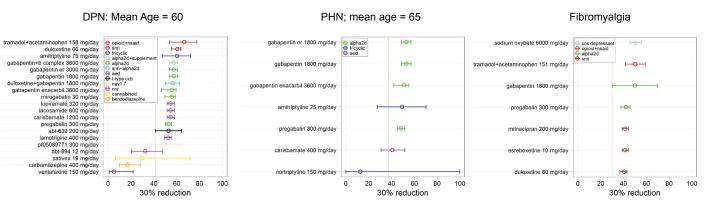
> $P(PIDk)_{ijkt} = logit^{-1}(eo_{it} + eo_{ik} + f(Drug_{ij}, Dose_{ij}, X_{ij}, \theta) \cdot (1 + et_{ik}))$ with logit⁻¹ the inverse logit transform to keep the probabilities between 0 and 1

- $f(\theta)$ is typically a general drug effect or E_{max}-shaped dose-response model
- eo_{it} is an unstructured placebo model defined by a fixed effect for every trial *i* at time point *t* representing the logit of the PID50 placebo response
- *eo_{ik}* and *et_{ik}* represent a shift in placebo response and drug response on the logit scale from PID50 or PID30 for every trial *i*, respectively
- Trial-to-trial variability in PID response is described by trial-specific random effects ηo_{ik} with mean θo_k and variance ωo_k² and ηt_{ik} with mean θt_k and variance ωt_k²

 $eo_{ik}=eo_k+\eta o_{ik}$ and $et_{ik}=et_k+\eta t_{ik}$

The correlation between time points is accounted for by assuming a compound symmetry correlation structure for all
observations within an endpoint, within one arm within a trial

Final MBMA Model


- MBMA model developed in R (version 3.3.2) using the nlme function
- Drug-specific treatment effects within an indication
- Described by a constant or E_{max}-shaped dose-response
- Shared E_{max} within a drug class
- Drug-specific potency (ED₅₀) across indications
- Onset of treatment effect by drug class was similar to onset of placebo effect or was not estimable
- · Additional covariates were evaluated after initial analysis
- Age had a significant effect on treatment effect (difference from placebo)
- Common age effect for DPN and PHN: OR (95% CI) = 1.10 (1.05-1.15); age effect not significant for fibromyalgia
 Age confounded with indication
- Other covariates were evaluated but were found to be not statistically significant: mean body weight, mean baseline pain score, mean disease duration, sex, race, and imputation method
- Baseline pain score was not found to be statistically significant based on *P*-value = 0.07 and therefore was not included in the model
- · Additional sensitivity analysis to be carried out (ie, imputation method)

Black and purple curves and markers show 30% and 50% reduction rates, respectively. Estimated placebo response at dose = 0. Symbol size proportional to sample size.

 Forest plots allow the comparison of treatment effect estimates of common drugs in DPN, PHN, and fibromyalgia (shown for PID30 only)

Figure 5. Estimated treatment effect (mean, 95% Cl) on an absolute scale for the 30% reduction rate by drug and indication relative to an estimated maximum placebo response of 41.5% for DPN, 37.1% for PHN, and 29.9% for fibromyalgia (orange dotted vertical line)

- Treatment effect estimates with associated 95% confidence intervals were derived as the mean and 2.5th-97.5th percentile intervals across 3,000 simulated data sets with parameter values sampled from the multivariate normal variance-covariance matrix of the estimates
- The estimated mean shift in placebo response and drug response on the logit scale from PID50 to PID30 (eo_k and et_k) inform the treatment effect estimates for the 50% reduction rate

SUMMARY AND CONCLUSIONS

- MBMA provides a quantitative framework for benchmarking new investigational compounds to SOC and improves understanding of drug-response relationship for compounds used in treatment of pain
- The current analysis of the 30% and 50% reduction rates in pain score from baseline shows a lower placebo response for fibromyalgia than for DPN and PHN and a decrease in treatment effect for increasing placebo response
- Age had a statistically significant effect on treatment effect for DPN and PHN. All other tested covariates were not statistically significant

References

1. Dworkin RH, et al. *Pain*. 2007;132(3):237-251.

- WATAG Advisory Note: Guidelines for the pharmacological treatment of neuropathic pain (2017).
- 3. Finnerup NB, et al. Lancet Neurol. 2015;14(2):162-173
- 4. Mandema JW, et al. Cephalalgia. 2005;25(9):715-725.